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The Lee Fields Medal VII: SOLUTIONS

1. Show that there are no strictly positive integers k, m, and n such that

32m . 22n — 7k

Solution: Suppose that k,m,n € N is a solution. Note that 3*™ — 22" = (3m)2 — (2")?
is a difference of two squares, so using 72 — y? = (z — y)(z + v):

By prime decomposition, to be equal to 7% both must be powers of 7, say 3™ — 2™ = 7¢
and 3™ + 2™ = 7°. Because 3™ + 2™ > 3™ — 2™ b > a,say b = a + ¢, for ¢ > 0. Add
these together:

23" =744 7
=T7(147°

But the left-hand side does not have any factor 7 so we can conclude 7* = 1 and so
3m — 2" = 1. It follows that 2" = 3™ — 1 and 3™ + 2" = 7¥ which implies that

343" 1=7" =—= 2.3"—1="7"

Note that the left-hand is one less a multiple of three, so gives remainder two on
division by three!. However the right hand side gives remainder one on division by
three because it gives remainder one on division by three. Why? Well,

T'=3-2+1,
and if 79 = 3 - ¢4 + 1, then:
TN =73 ¢cq+T7=3T-cq+3-2+1L
a multiple of three
There is no solution.

Statistically this was the joint hardest question with Q.5 — however while two students
got full marks on Q. 5, no student got this question correct.

12.3m _343-1=3(2-3m"1—1)+2



Remark: Recall we were led to conclude that if there was a solution k, m, n € N that
3m — 2" = 1. A solution to 3™ — 2" = 1 is given by 32 — 2% = 1. In 1844, a French-
Belgian mathematician Catalan guessed that this was the only solution to 3" —2" =1
— indeed the only solution to a™ — b™ = 1. This was finally proved 158 years later by
a Romanian mathematician Mihailescu. We can then note that at m = 2 and n = 3,
322 — 223 = 3% — 26 = 17, which is not a power of 7.

. Let @ > 0 be a real number. Calculate

J

where the number of square roots grows to infinity. Justify your answer.
Solution: Essentially what happens here is that

<a, ifa>1
Va is =a, ifa=1
>a, ifa<l.

So applying the square root function repeatedly, depending on a, keeps getting you
closer and closer to one. To fully justify this you could write:

\/a _ a1/2, \/02(a) _ (a1/2)1/2 — a1/47 . ,\/O"(a) _ (Ll/2n7

and as n — 00, 1/2" — 0, and so \/O”(a) — a” and a® = 1. This requires continuity of
the function z — a®.

One student said assume y = lim,,_,, \/‘ma and asserted:
Y=y = vV=y = yly—1)=0 = y=0o0ry=1.

[ am not sure at this point how to throw out the y = 0 possibility without arguing as per
the above. Also this approach assumes that the sequence z,, := , /°"(a) does converge to
something — one student appealed to a technical result that an increasing/decreasing
sequence that is bounded above/below is convergent.

. Which real numbers are solutions of the equation:

(x+1)7° —2(x+1)* = (z +1)*?

Solution: This is very much a trick question because ALL real numbers satisfy this
equation:

(z+1)P —z@+1)? =@+ (z+1—2)=(x+1)* 1= (z+1)>2



Such equations are called identities. Students who ending up with 0 = 0 and concluded
all x € R are solutions did not get full marks. This is a logical error. For example,
that logic allows us to conclude all numbers are equal their negative:

r = —T

= 0=0

X0

= g = —x for all z € R.

4. Show that if P(xq,y;) and Q(x2,y2) are distinct points on the curve
Yy = mzx + ¢,
that the slope of P(Q) is equal to m.
Solution: Points on the curve satisfy the equation of the curve so we have
Y1 = mxy1 + ¢ and ys = maxy + ¢,
so we are finding the slope between (x1, mx; + ¢) and (x5, mxs + ¢), which is:

mxe +c— (mxy +c¢) m(ry — 1)
mPQ = = =m,
To — X1 To — X1

where the points being distinct? means we could divide above and below by x5 — 1.

That is the slope between any two points on this curve have the same as any other
pair — that is ¥y = max + ¢ is the equation of a line.

Students who assumed that y = maz+cis aline... I guess this is a reasonable assumption
(based on ordinary level leaving cert maths) but the point was rather to prove this.

5. Suppose that a function f is given by an infinite sum:

f@):a0+a1$+a2x2+a31;3—|—a4x4+...

Assuming that term-by-term differentiation is possible for this infinite sum, given that
ap = 1, find the general term a,, of a non-zero sequence of real numbers (ag, a1, as, as, . ..)
such that the derivative of f is equal to f itself:

f'(x) = f(=).

Solution: This also assumes that two ‘infinite polynomials’ aka power series are equal
if and only if all their coefficients are equal. Let us find an expression for f'(z):

f/<$) = a1 +2(12$—|—3a3x2+..._i_nanxnfl_i_”.

%in general P(x1,y1) # Q(x2,y2) does not imply 21 # x2, but here it does because if ; = x5 then y; = yo
and P=(Q



We see that to equal f(z), the coefficients of 2"~! in f(z) and f’(x) must be equal:

Qp—1
" .

Ap_1 =N+ 0y, — Ap =

At this points students probably had to use this recurrence to find the first few values
and hopefully spot a pattern:

1 1 1/2 1 1/(1-2-3) 1
e T L - T P P M 1 1234
Students with this much could reasonably write down:
1 1
p = —————— =

1-2:3...n  nl’

6. The dots are equally spaced. What fraction of the square is shaded?

Figure 1: Let a be the common equal distance, and b the side-lengths in the blue isoceles
triangle.

The area of the red triangle is simply:

1 1
A = ébase -h= §a2.



Using Pythagoras in the small blue triangle; and it’s area:

1 1 1
2 2 2 2 2 2
=20 — b= -a" = A, = =b"=-a".

a 2a b= 5 a

Therefore the area of the unshaded region is:
4- A +4- Ay, =2d" + a® = 3d”.

The total area is (3a)? = 9a?, therefore the shaded area is 9a? — 3a® = 6a® and the
fraction shaded is:
6a®> 2

9a2 3’
. Consider a triangle AABC with ZABC' a right-angle, and D a point on [AC| such
that [BD] is perpendicular to [AC]:

C

Prove that

o _|CD|
sin“(£ZBAC) = TAc|

Solution: It is possible to produce extremely convoluted solutions to this... on the
other hand:

X ®
8

Figure 2: Note ZABD =90° — ZBAC and so ZCBD = ZBAC.

From this observation:

sin?(/BAC) = sin(£BAC) - sin(£/BAC)
= sin(£LBAC) - sin(£LCBD)

|BC| |CD| |CD|

" JAC] |BC| ~ JAC|




8. Consider three decks of playing cards, one belonging to Alice, one belonging to Bob,
and one belonging to a referee. Alice chooses, not at random, their 21 favourite cards
from their deck. Bob chooses, again not at random, their favourite 36 cards from their
deck. The referee takes one card at random from their own deck. Let A be the event
that the referee chose one of Alice’s favourite cards, and B the event that the referee
chose one of Bob’s favourite cards.

(a)
(b)
()

()

Find P[A], the probability that the referee chose one of Alice’s favourite cards.
Find P[B].

Recalling that Alice and Bob did not choose their favourite cards at random, find
the maximum possible value of P[A N B, the probability that the referee chose a
card that was a favourite of BOTH Alice AND Bob.

Similarly, find the minimum possible value of P[A N BJ.

Solution:

(a) & (b)

()

This is the straightforward

P[A] = 21/52;  P[B] = ‘;’_S

Let us note that:

# cards that are in both Alice AND Bob’s favourites
52 '

P[AN B] =

So we want to make the number of cards to be in both Alice AND Bob’s favourites
to be as large as possible. This is achieved by supposing that ALL of Alice’s
favourites are also favourites of Bob’s:
21
P[ANB] = —.
max [ ] =
In this case we want as few cards in common between Alice and Bob. They
have 21+36=57 cards chosen in total so at least five have to be in both of their
favourites:

min P[ANB] = 5—52

Alternatively use “inclusion—exclusion”:
|JAUB|=|A|+|B|-|ANB| = |AnNB|=|A|+|B|—-|AUB|,

and to make this as small as possible you take away, | AU B|, as much as possible.
We can achieve |AU B| = 52 — all cards are either a favourite of Alice or of Bob

— and this leaves:
min |ANB|=21+36—-52=05.



9. In rugby, teams 7T} and 75 can score three points with a penalty or drop goal, five
points with an unconverted try, and seven points with a converted try. If the order of
scores is not important, how many different ways could a match end with both teams
scoring 20 points?

Note, T7 with a drop goal and T; with a penalty is a ‘different’ 3-3 to the 3-3 where
both 77 and T5 score a penalty.

Solution: Let us focus on one team at a time. Let C' be the number of converted
tries, T' be the number of unconverted tries, P be the number of penalties, and D the
number of drop goals. The total number of points we want for each team is:

7C + 5T + 3P + 3D = 20.
We can break into cases:

(a) Suppose C' = 0 so we consider:
5T + 3P + 3D = 20.

i. If T =0, 3P+ 3D = 20 has no solutions.

ii. f T'=1,3P+ 3D =15. We get six solutions, one for each P =0,1,...5.
iii. fT=2o0rT=3,3P+ 3D =10 or 3P 4+ 3D = 5 have no solutions.
iv. If T'= 4 we have one solution.

(b) Suppose C' =1 so we consider:
5T+ 3P + 3D = 13.

i. T =0orT =1 we have no solutions.

ii. If T"= 2 we have 3P + 3D = 3 which has two solutions, one for P = 0,
another for P = 1.

(¢) Suppose C = 2 so we consider:
5T+ 3P + 3D = 6.
We must have T' = 0 and then we get three solutions, one for each P =0, 1, 2.

Altogether then there are 6 + 1 4+ 2 + 3 = 12 solutions for 77. Therefore for T vs T3
there are 12 x 12 = 144 possible ways to make up a 20-20 draw.



10. There are three money boxes, labelled “Euro”, “Sterling”, and “Mixed”. You cannot
look inside a box, but can press a button on it to remove a coin from that box.

One of the boxes has euro coins in it, another has sterling coins, and in the third a
mixture of the two. But ALL three money boxes are labeled incorrectly. What is the
minimum number of coins you can remove to work out which box is which?

Solution: The key is to understand that ALL the boxes are wrong.

In particular, the box labelled mixed is either sterling or euro. Get one coin out.

(a) If it is euro, that box is Euro. The box labelled Sterling cannot be Sterling, so it
must be Mixed. The Mixed box is Sterling.

(b) If the one coin out is Sterling, that box is Sterling. The box labelled Euro cannot
be Euro, so it must be Mixed. The Mixed box is Euro.

This means you can figure out all the boxes by removing ONE coin.



