
The Lee Fields Medal VII: SOLUTIONS

1. Show that there are no strictly positive integers k, m, and n such that

32m − 22n = 7k.

Solution: Suppose that k,m, n ∈ N is a solution. Note that 32m − 22n = (3m)2 − (2n)2

is a difference of two squares, so using x2 − y2 = (x− y)(x+ y):

32m − 22n = (3m − 2n)(3m + 2n).

By prime decomposition, to be equal to 7k both must be powers of 7, say 3m−2m = 7a

and 3m + 2m = 7b. Because 3m + 2m > 3m − 2m, b > a, say b = a + c, for c > 0. Add
these together:

2 · 3m = 7a + 7a+c

= 7a(1 + 7c)

But the left-hand side does not have any factor 7 so we can conclude 7a = 1 and so
3m − 2n = 1. It follows that 2n = 3m − 1 and 3m + 2n = 7k which implies that

3m + 3m − 1 = 7k =⇒ 2 · 3m − 1 = 7k.

Note that the left-hand is one less a multiple of three, so gives remainder two on
division by three1. However the right hand side gives remainder one on division by
three because it gives remainder one on division by three. Why? Well,

71 = 3 · 2 + 1,

and if 7d = 3 · cd + 1, then:

7d+1 = 7 · 3 · cd + 7 = 3 · 7 · cd + 3 · 2︸ ︷︷ ︸
a multiple of three

+1.

There is no solution.

Statistically this was the joint hardest question with Q.5 — however while two students
got full marks on Q. 5, no student got this question correct.

12 · 3m − 3 + 3− 1 = 3(2 · 3m−1 − 1) + 2



Remark: Recall we were led to conclude that if there was a solution k, m, n ∈ N that
3m − 2n = 1. A solution to 3m − 2n = 1 is given by 32 − 23 = 1. In 1844, a French–
Belgian mathematician Catalan guessed that this was the only solution to 3m−2n = 1
— indeed the only solution to am − bn = 1. This was finally proved 158 years later by
a Romanian mathematician Mihăilescu. We can then note that at m = 2 and n = 3,
32·2 − 22·3 = 34 − 26 = 17, which is not a power of 7.

2. Let a > 0 be a real number. Calculate

· · ·

√
· · ·

√√√
a,

where the number of square roots grows to infinity. Justify your answer.

Solution: Essentially what happens here is that

√
a is


< a, if a > 1

= a, if a = 1

> a, if a < 1.

So applying the square root function repeatedly, depending on a, keeps getting you
closer and closer to one. To fully justify this you could write:

√
a = a1/2,

√◦2(a) = (a1/2)1/2 = a1/4, · · · ,√◦n(a) = a1/2
n

,

and as n → ∞, 1/2n → 0, and so
√◦n(a) → a0 and a0 = 1. This requires continuity of

the function x 7→ ax.

One student said assume y = limn→∞
√◦na and asserted:

y =
√
y =⇒ y2 = y =⇒ y(y − 1) = 0 =⇒ y = 0 or y = 1.

I am not sure at this point how to throw out the y = 0 possibility without arguing as per
the above. Also this approach assumes that the sequence xn :=

√◦n(a) does converge to
something — one student appealed to a technical result that an increasing/decreasing
sequence that is bounded above/below is convergent.

3. Which real numbers are solutions of the equation:

(x+ 1)3 − x(x+ 1)2 = (x+ 1)2?

Solution: This is very much a trick question because ALL real numbers satisfy this
equation:

(x+ 1)3 − x(x+ 1)2 = (x+ 1)2(x+ 1− x) = (x+ 1)2 · 1 = (x+ 1)2.



Such equations are called identities. Students who ending up with 0 = 0 and concluded
all x ∈ R are solutions did not get full marks. This is a logical error. For example,
that logic allows us to conclude all numbers are equal their negative:

x = −x

=⇒
×0

0 = 0

=⇒ x = −x for all x ∈ R.

4. Show that if P (x1, y1) and Q(x2, y2) are distinct points on the curve

y = mx+ c,

that the slope of PQ is equal to m.

Solution: Points on the curve satisfy the equation of the curve so we have

y1 = mx1 + c and y2 = mx2 + c,

so we are finding the slope between (x1,mx1 + c) and (x2,mx2 + c), which is:

mPQ =
mx2 + c− (mx1 + c)

x2 − x1

=
m(x2 − x1)

x2 − x1

= m,

where the points being distinct2 means we could divide above and below by x2 − x1.

That is the slope between any two points on this curve have the same as any other
pair — that is y = mx+ c is the equation of a line.

Students who assumed that y = mx+c is a line... I guess this is a reasonable assumption
(based on ordinary level leaving cert maths) but the point was rather to prove this.

5. Suppose that a function f is given by an infinite sum:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

Assuming that term-by-term differentiation is possible for this infinite sum, given that
a0 = 1, find the general term an of a non-zero sequence of real numbers (a0, a1, a2, a3, . . . )
such that the derivative of f is equal to f itself:

f ′(x) = f(x).

Solution: This also assumes that two ‘infinite polynomials’ aka power series are equal
if and only if all their coefficients are equal. Let us find an expression for f ′(x):

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + · · · .
2in general P (x1, y1) ̸= Q(x2, y2) does not imply x1 ̸= x2, but here it does because if x1 = x2 then y1 = y2

and P = Q



We see that to equal f(x), the coefficients of xn−1 in f(x) and f ′(x) must be equal:

an−1 = n · an =⇒ an =
an−1

n
.

At this points students probably had to use this recurrence to find the first few values
and hopefully spot a pattern:

a0 = 1, a1 =
1

1
= 1, a2 =

1

2
, a3 =

1/2

3
=

1

1 · 2 · 3
, a4 =

1/(1 · 2 · 3)
4

=
1

1 · 2 · 3 · 4
.

Students with this much could reasonably write down:

an =
1

1 · 2 · 3 · · ·n
=

1

n!
.

6. The dots are equally spaced. What fraction of the square is shaded?

Solution: This question was statistically the easiest.

Figure 1: Let a be the common equal distance, and b the side-lengths in the blue isoceles
triangle.

The area of the red triangle is simply:

Ar =
1

2
base · h =

1

2
a2.



Using Pythagoras in the small blue triangle; and it’s area:

a2 = 2b2 =⇒ b2 =
1

2
a2 =⇒ Ab =

1

2
b2 =

1

4
a2.

Therefore the area of the unshaded region is:

4 · Ar + 4 · Ab = 2a2 + a2 = 3a2.

The total area is (3a)2 = 9a2, therefore the shaded area is 9a2 − 3a2 = 6a2 and the
fraction shaded is:

6a2

9a2
=

2

3
.

7. Consider a triangle ∆ABC with ∠ABC a right-angle, and D a point on [AC] such
that [BD] is perpendicular to [AC]:

Prove that

sin2(∠BAC) =
|CD|
|AC|

.

Solution: It is possible to produce extremely convoluted solutions to this... on the
other hand:

Figure 2: Note ∠ABD = 90◦ − ∠BAC and so ∠CBD = ∠BAC.

From this observation:

sin2(∠BAC) = sin(∠BAC) · sin(∠BAC)

= sin(∠BAC) · sin(∠CBD)

=
|BC|
|AC|

· |CD|
|BC|

=
|CD|
|AC|

.



8. Consider three decks of playing cards, one belonging to Alice, one belonging to Bob,
and one belonging to a referee. Alice chooses, not at random, their 21 favourite cards
from their deck. Bob chooses, again not at random, their favourite 36 cards from their
deck. The referee takes one card at random from their own deck. Let A be the event
that the referee chose one of Alice’s favourite cards, and B the event that the referee
chose one of Bob’s favourite cards.

(a) Find P[A], the probability that the referee chose one of Alice’s favourite cards.

(b) Find P[B].

(c) Recalling that Alice and Bob did not choose their favourite cards at random, find
the maximum possible value of P[A ∩B], the probability that the referee chose a
card that was a favourite of BOTH Alice AND Bob.

(d) Similarly, find the minimum possible value of P[A ∩B].

Solution:

(a) & (b) This is the straightforward

P[A] = 21/52; P[B] =
36

52
.

(c) Let us note that:

P[A ∩B] =
# cards that are in both Alice AND Bob’s favourites

52
.

So we want to make the number of cards to be in both Alice AND Bob’s favourites
to be as large as possible. This is achieved by supposing that ALL of Alice’s
favourites are also favourites of Bob’s:

max P[A ∩B] =
21

52
.

(d) In this case we want as few cards in common between Alice and Bob. They
have 21+36=57 cards chosen in total so at least five have to be in both of their
favourites:

min P[A ∩B] =
5

52
.

Alternatively use “inclusion–exclusion”:

|A ∪B| = |A|+ |B| − |A ∩B| =⇒ |A ∩B| = |A|+ |B| − |A ∪B|,

and to make this as small as possible you take away, |A∪B|, as much as possible.
We can achieve |A∪B| = 52 — all cards are either a favourite of Alice or of Bob
— and this leaves:

min |A ∩B| = 21 + 36− 52 = 5.



9. In rugby, teams T1 and T2 can score three points with a penalty or drop goal, five
points with an unconverted try, and seven points with a converted try. If the order of
scores is not important, how many different ways could a match end with both teams
scoring 20 points?

Note, T1 with a drop goal and T2 with a penalty is a ‘different’ 3-3 to the 3-3 where
both T1 and T2 score a penalty.

Solution: Let us focus on one team at a time. Let C be the number of converted
tries, T be the number of unconverted tries, P be the number of penalties, and D the
number of drop goals. The total number of points we want for each team is:

7C + 5T + 3P + 3D
!
= 20.

We can break into cases:

(a) Suppose C = 0 so we consider:

5T + 3P + 3D = 20.

i. If T = 0, 3P + 3D = 20 has no solutions.

ii. If T = 1, 3P + 3D = 15. We get six solutions, one for each P = 0, 1, . . . 5.

iii. If T = 2 or T = 3, 3P + 3D = 10 or 3P + 3D = 5 have no solutions.

iv. If T = 4 we have one solution.

(b) Suppose C = 1 so we consider:

5T + 3P + 3D = 13.

i. If T = 0 or T = 1 we have no solutions.

ii. If T = 2 we have 3P + 3D = 3 which has two solutions, one for P = 0,
another for P = 1.

(c) Suppose C = 2 so we consider:

5T + 3P + 3D = 6.

We must have T = 0 and then we get three solutions, one for each P = 0, 1, 2.

Altogether then there are 6 + 1 + 2 + 3 = 12 solutions for T1. Therefore for T1 vs T2

there are 12× 12 = 144 possible ways to make up a 20-20 draw.



10. There are three money boxes, labelled “Euro”, “Sterling”, and “Mixed”. You cannot
look inside a box, but can press a button on it to remove a coin from that box.

One of the boxes has euro coins in it, another has sterling coins, and in the third a
mixture of the two. But ALL three money boxes are labeled incorrectly. What is the
minimum number of coins you can remove to work out which box is which?

Solution: The key is to understand that ALL the boxes are wrong.

In particular, the box labelled mixed is either sterling or euro. Get one coin out.

(a) If it is euro, that box is Euro. The box labelled Sterling cannot be Sterling, so it
must be Mixed. The Mixed box is Sterling.

(b) If the one coin out is Sterling, that box is Sterling. The box labelled Euro cannot
be Euro, so it must be Mixed. The Mixed box is Euro.

This means you can figure out all the boxes by removing ONE coin.


